21 research outputs found

    Resolution Limit of Correlation Plenoptic Imaging between Arbitrary Planes

    Get PDF
    Correlation plenoptic imaging (CPI) is an optical imaging technique based on intensity correlation measurement, which enables detecting, within fundamental physical limits, both the spatial distribution and the direction of light in a scene. This provides the possibility to perform tasks such as three-dimensional reconstruction and refocusing of different planes. Compared with standard plenoptic imaging devices, based on direct intensity measurement, CPI overcomes the problem of the strong trade-off between spatial and directional resolution. Here, we study the resolution limit in a recent development of the technique, called correlation plenoptic imaging between arbitrary planes (CPI-AP). The analysis, based on Gaussian test objects, highlights the main properties of the technique, as compared with standard imaging, and provides an analytical guideline to identify the limits at which an object can be considered resolved

    Periodic patterns for resolution limit characterization of correlation plenoptic imaging

    Full text link
    The measurement of the spatio-temporal correlations of light provides an interesting tool to overcome the traditional limitations of standard imaging, such as the strong trade-off between spatial resolution and depth of field. In particular, using correlation plenoptic imaging, one can detect both the spatial distribution and the direction of light in a scene, pushing both resolution and depth of field to the fundamental limit imposed by wave-optics. This allows one to perform refocusing of different axial planes and three-dimensional reconstruction without any spatial scanning. In the present work, we investigate the resolution limit in a particular correlation plenoptic imaging scheme, by considering periodic test patterns, which provide, through analytical results, a deeper insight in the resolution properties of this second-order imaging technique, also in comparison with standard imaging.Comment: 16 pages, 4 figure

    Correlated-photon imaging at 10 volumetric images per second

    Full text link
    The correlation properties of light provide an outstanding tool to overcome the limitations of traditional imaging techniques. A relevant case is represented by correlation plenoptic imaging (CPI), a quantum-inspired volumetric imaging protocol employing spatio-temporally correlated photons from either entangled or chaotic sources to address the main limitations of conventional light-field imaging, namely, the poor spatial resolution and the reduced change of perspective for 3D imaging. However, the application potential of high-resolution imaging modalities relying on photon correlations is limited, in practice, by the need to collect a large number of frames. This creates a gap, unacceptable for many relevant tasks, between the time performance of correlated-light imaging and that of traditional imaging methods. In this article, we address this issue by exploiting the photon number correlations intrinsic in chaotic light, combined with a cutting-edge ultrafast sensor made of a large array of single-photon avalanche diodes (SPADs). This combination of source and sensor is embedded within a novel single-lens CPI scheme enabling to acquire 10 volumetric images per second. Our results place correlated-photon imaging at a competitive edge and prove its potential in practical applications.Comment: 13 pages, 6 figure

    Surgical treatment of gingival overgrowth with 10 years of follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In some pathological conditions, gingivitis caused by plaque accumulation can be more severe, with the result of an overgrowth. Nevertheless, the overgrowth involves the gingival margin with extension to the inter-dental papilla. The lesion may involve the inter-proximal spaces, and become so extensive that the teeth are displaced and their crowns covered. Severe overgrowth may lead to impairment in aesthetic and masticatory functions, requiring surgical excision of the excessive tissue. Aim of this study is to describe an operative protocol for the surgical treatment of localized gingival overgrowth analyzing the surgical technique, times and follow-up.</p> <p>Methods</p> <p>A total of 20 patients were enrolled and underwent initial, non surgical, periodontal treatment and training sessions on home oral hygiene training. The treatment plan involved radical exeresis of the mass followed by positioning of an autograft of connective tissue and keratinized gingiva.</p> <p>Results</p> <p>During 10 years of follow-up, all the grafts appeared well vascularized, aesthetically satisfactory, and without relapse.</p> <p>Conclusions</p> <p>Periodontal examinations, surgical procedures, and dental hygiene with follow-up are an essential part of the treatment protocol. However, additional effort is needed from the patient. Hopefully, the final treatment result makes it all worthwhile.</p

    Effective Pattern Intensity Artifacts Treatment for Electron Diffractive Imaging

    No full text
    We present a method to treat spurious intensities in electron diffraction experiments. Coherent electron diffraction imaging requires proper data reduction before the application of phase retrieval algorithms. The presence of spurious intensities in the electron diffraction patterns makes the data reduction complicated and time consuming and jeopardizes the application of mathematical constraints to maximize the information that can be extracted from the experimental data. Here we show how the experimental diffraction patterns can be treated to remove the unwanted artifacts without corrupting the genuine intensities scattered by the specimen. The resulting diffraction patterns are suitable for the application of further processes and constraints aimed at deriving fundamental structural information by applying phase retrieval algorithms or other approaches capable of deriving quantitative atomic resolution information about the specimen structure

    Determination of the Projected Atomic Potential by Deconvolution of the Auto-Correlation Function of TEM Electron Nano-Diffraction Patterns

    No full text
    We present a novel method to determine the projected atomic potential of a specimen directly from transmission electron microscopy coherent electron nano-diffraction patterns, overcoming common limitations encountered so far due to the dynamical nature of electron-matter interaction. The projected potential is obtained by deconvolution of the inverse Fourier transform of experimental diffraction patterns rescaled in intensity by using theoretical values of the kinematical atomic scattering factors. This novelty enables the compensation of dynamical effects typical of transmission electron microscopy (TEM) experiments on standard specimens with thicknesses up to a few tens of nm. The projected atomic potentials so obtained are averaged on sample regions illuminated by nano-sized electron probes and are in good quantitative agreement with theoretical expectations. Contrary to lens-based microscopy, here the spatial resolution in the retrieved projected atomic potential profiles is related to the finer lattice spacing measured in the electron diffraction pattern. The method has been successfully applied to experimental nano-diffraction data of crystalline centrosymmetric and non-centrosymmetric specimens achieving a resolution of 65 pm
    corecore